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Abstract
Affirming the consequent is an inferential pattern, in which one infers the antecedent
of a given conditional from its consequent. Abductive inference is structurally similar:
Given some evidence, one infers a hypothesis that explains the evidence. I show that a
Bayesian analysis of affirming the consequent helps us understand under which condi-
tions abduction may be justified. This provides a Bayesian vindication of explanatory
inference.
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1. Introduction
Affirming the consequent (AC) denotes an inferential pattern in which one infers the
antecedent A from the consequent C and the conditional ‘If A, then C’. In logical notation
(with � representing material implication):

C
A � C

) A

Although AC is deductively invalid (the premisses do not necessarily lead to the con-
clusion), it is easy to find cases where it seems that the conclusion is plausible because
of (and not only despite) the premisses. For instance, the conclusion that it rains seems
rather plausible given that the streets are wet and that the streets are wet if it rains. Of
course, it may have just stopped raining or there could be a leaking fire hydrant, but
because wet streets and rain largely overlap, the conclusion appears plausible. Besides
these general intuitions, which may or may not be shared, it is also possible to find plenty
of psychological evidence that people often accept the conclusion of AC (e.g. Thompson
1994, Oaksford et al. 2000).

It is one thing to point out that some inferential pattern is common in a descriptive
sense. But could AC ever be acceptable from a normative viewpoint? To answer
this question, it is helpful to restate the problem in probabilistic terms and apply the
following Bayesian analysis (following Eva et al. 2018): Suppose you learn C and
A ! C, where ! represents the indicative conditional connective. Do you need to also
become more confident of A in order to remain probabilistically coherent? If yes, then
AC is reasonable. Else, it is not.
Next, let us focus on abductive inference by considering an example:

You happen to know that Tim and Harry have recently had a terrible row
that ended their friendship. Now someone tells you that she just saw Tim
and Harry jogging together. The best explanation for this that you can think
of is that they made up. You conclude that they are friends again. (Douven
2021)

In this case, one infers (or in probabilistic terms, becomes more confident of) a hypothesis
H: ‘Tim and Harry are friends again’ because one learned evidence E: ‘Tim and Harry are



jogging together’ and because H provides an explanation of E. And indeed, the conclusion
that Tim and Harry are friends seems reasonable, even though it is deductively invalid
(they could be jogging together for some other reason). Just like before, it is also easy
to find cases where an abductive inference is misguided. For instance, suppose that
a student yawns during a lecture. It would be wrong to conclude that the student is
sleepy if they are merely bored (e.g., because the lecture is on Hegel’s phenomenology,
which many students find hard to engage with). As with AC, it seems that restating the
problem in probabilistic terms might also help us understand when abductive inference
is reasonable from a normative viewpoint and when it is not. In fact, doing so might be
quite straight-forward because abductive inference is structurally similar to AC (Pfister
2022). This becomes clear when Peirce’s well-known characterization of abduction is
considered:

The surprising fact, C, is observed.

But if A were true, C would be a matter of course.

Hence, there is a reason to suspect that A is true. (Peirce 1935: 5.189)

The obvious differences in comparison to AC are that we operate with an explanans (i.e.,
that which does the explaining) instead of A and with an explanandum (i.e., that which is
to be explained) instead of C, and that the conditional, which represents the explanation
of C by A, is subjunctive. However, as I will argue, these differences are minor when
this specific form of abductive inference is analysed in a Bayesian framework.

Because AC can be normatively reasonable and because at least some abductive
inferences may be characterized as analogous to AC, it follows that this type of abductive
inference can also be normatively reasonable. The approach of Eva and Hartmann (2018)
turns out to be very helpful in this context: it affords an analogous investigation of the
conditions under which it is rational for a Bayesian agent to infer an explanans from
an explanandum. I will call this inferential pattern affirming the explanandum (AE) in
analogy to the well-known AC. I will explore under which conditions AE is reasonable
and whether and to what degree these results vindicate abduction in a Bayesian context.
In other words, I will outline in which cases this type of abductive inference is part of
Bayesian inference.

In the next section (Section 2), the focus will be on the cases where the explanandum
is learned with certainty. I will then move on to cases where the explanandum E
is uncertain (Section 3) to highlight that confirmation does not necessarily warrant
abduction. To wrap the discussion up, I will briefly discuss how my analysis vindicates
abductive inference in a Bayesian context (Section 4).



2. Learning the explanandum with full certainty
Let us start the investigation with a simple case. Following the approach of Eva and

Hartmann (2018), I introduce two binary propositional variables� and⇢ (in italic script).
The variable � represents the hypothesis that does the explaining (the explanans), and
⇢ represents the evidence that is to be explained (the explanandum). The variables have
the values H and ¬H, and E and ¬E (in roman script), which respectively correspond to
whether the explanans (H) or the explanandum (E) hold. An agent’s prior probability
distribution % (that is, prior to learning about the explanandum) can then be represented
with the parameters:

%(H) = ⌘

%(E|H) = ?, %(E|¬H) = @. (1)

The prior distribution % over the variables � and ⇢ is then given by

%(H&E) = ⌘?, %(H&¬E) = ⌘?̄,

%(¬H&E) = ⌘̄@, %(¬H&¬E) = ¬⌘?̄, (2)

where Ḡ is used as a shorthand for 1 � G. Throughout the paper, I also assume that all
relevant parameters of the prior distribution are non-extreme: 0 < ⌘ < 1, 0 < ? < 1,
0 < @ < 1. Returning to the example by Douven (2021) mentioned above, % represents
the state of an agent before learning that Tim and Harry are jogging together (E). The
agent thinks it is unlikely that they are friends (%(H) is low) and that ? > @, regardless
of their specific values (it is more likely that they jog together if they are friends than if
they are not).

Next, the agent learns E: Tim and Harry are jogging together, and reasons that E is
best explained by H (‘If H were the case, E would be a matter of course.’). This prompts
them to update % to a posterior probability distribution %0, which may be represented by
the corresponding primed variables ⌘0, ?0, @0:

%0(H&E) = ⌘0?0, %0(H&¬E) = ⌘0 ?̄0,

%0(¬H&E) = ⌘̄0@0, %0(¬H&¬E) = ¬⌘0 ?̄0. (3)

Note that %0 is constrained by the information the agent learned (E) and explanatorily
reasoned about (that H explains E). The simplest way to include these constraints is
therefore to set %0(E) = ⌘0?0 + ⌘̄0@0 = 1 (constraint AE1), and %0(E|H) = ?0 = 1
(constraint AE2). Here, AE1 simply amounts to learning the explanandum, while AE2
represents a probabilistic interpretation of considering E being a matter of course if H



were true. It is then possible to show the following (proof omitted as I am reusing a
result by Eva and Hartmann 2018: 810, Proposition 3):

Proposition 1. An agent considers the propositions H and E and has a prior probability
distribution % according to Eq. 2 defined over them. Learning the explanandum E by
setting %0(E) = 1 and reasoning that E would be a matter of course in case H were
true by setting %0(E|H) = 1 and minimizing the Kullback-Leibler divergence between
%0 and %, then implies that the new probability of the explanans H, that is %0(H), equals
%(H|E).

This is an interesting result: in the simple case where an agent learns E with certainty
and reasons that H explains E by making it completely expected, abduction turns out to be
reasonable exactly when the posterior probability of H after learning E is high. The same
result also follows if one interprets AE1 and AE2 as learning E and a material conditional
H � E and performs standard Bayesian conditionalization on their conjunction. This is
because E&(H � E) , E. In our running example, it is reasonable to infer that Tim and
Harry are friends because this explains their jogging together exactly when their jogging
together confirms their renewed friendship. In these simple cases abductive reasoning
turns out to be equivalent to simple Bayesian conditionalisation on the explanandum.
Abductive inference can therefore be completely warranted, but only if it does not
diverge from standard Bayesian updating on the evidence that needs to be explained.
The explanatoriness itself, however, turns out to be evidentially irrelevant (concurring
with Roche and Sober 2013).

3. Uncertain explanandum
Nevertheless, this does not mean that the prospects for Bayesian explanationism are

doomed. For one, I have so far only considered abductive inference when an agent
becomes fully certain of the explanandum. However, as Lindley (1985: 104) warns, it
is a good idea to leave a little room for doubt and not assign extreme probabilities to
uncertain events (i.e., to anything but logical tautologies and contradictions).

Let us therefore see what happens in case the explanandum is not learned with full
certainty. Douven’s (2021) introductory example again turns out to be helpful. Suppose
that an agent learns that Tim and Harry were jogging together via testimony (as in
Douven’s example), but does not completely trust the report. Or perhaps the agent saw
Tim and Harry jogging together but from rather far and in poor lighting conditions. In
any case, the agent becomes more but not fully certain of the surprising explanandum.
The agent then reasons that if Tim and Harry are friends again, then their jogging would
be a matter of course. The learning constraints in such scenarios are %(E) < %0(E) < 1
(constraint AE3) and %0(E|H) = 1 (constraint AE4). When is it then reasonable to
conclude that they buried the hatchet? More generally, when is it reasonable to infer



the explanans due to its being a matter of course given an uncertain explanandum? The
result depends on the prior probability distribution and on how certain the agent becomes
of the explanandum E (proof in Appendix):

Proposition 2. An agent considers the propositions H and E and has a prior probability
distribution % according to Eq. 2 defined over them. Learning the explanandum E
by setting %0(E) > %(E) and reasoning that E would be a matter of course in case
H were true by setting %0(E|H) = 1 and minimizing the Kullback-Leibler divergence
between %0 and % implies that the new probability of the explanans H increases iff
%0(E) > %(E)/%(E|H).

Note that the same result could also be obtained by Jeffrey conditioning on E and
the material conditional H � E (see Proposition 9 in Eva and Hartmann 2018). In
a simplified sense, the result shows that abductive inference is only reasonable if the
agent becomes more certain of the explanandum E than what they initially thought the
relevance of the explanans H for the explanandum E was. If the agent initially thought
that H more or less entails E (i.e., if %(E|H) = 1� n), then abductive inference to H from
E is warranted as soon as the agent becomes more certain of E than they initially were.
The less the agent initially thought H was relevant for E, however, the more certain they
need to become of E for the inference to be warranted. Moreover, it is also easy to see
that it is never reasonable to become more certain of the explanans H if E and H were
initially assumed to be negatively correlated (i.e., if %(E|H) < %(E|¬H)). In this case
the threshold that warrants increased confidence in the explanans H is %(E)/%(E|H) > 1
and it is impossible to become more certain of E than that. Affirming the explanandum
thus turns out to be predestined to fail in such cases.

To make the result easier to understand, suppose the agent initially thought Tim
and Harry were somewhat unlikely to go jogging together, e.g., %(E) = .4. The agent
then learns some evidence which suggests that they are likely jogging together and sets
%0(E) = .7 and, moreover, reasons that if they are friends again, then their jogging would
be a matter of course: %0(E|H) = 1. Proposition 2 tells that affirming the explanandum
is in this case only reasonable if the agent initially thought %(E|H) > 4/7 ⇡ .57, that
is, if the agent initially thought that jogging was more likely if they reestablished their
friendship. Importantly, if the agent initially thought that the reestablished friendship
would increase the chances of their jogging but not by much, e.g., %(E|H) = .55 >

%(E) = .4, then the inference to the friendship is not warranted because the posterior
probability of E is not high enough. This means that it might be rational to (i) find
it likely that Tim and Harry are jogging, (ii) to initially think that jogging is more
likely if Tim and Harry are friends, (iii) to come to think that their running would
be completely expected if they are friends, and yet despite (i)-(iii), it may still not be
warranted to become more confident that they are friends again. Even though the agent



may come to think that their friendship perfectly accounts for the (uncertain) jogging,
this conclusion was already doomed from the start. This also highlights that although
H and E may be positively correlated and therefore in a mutually confirmatory relation,
an abductive inference from E to H will still not always be warranted. In other words,
even if E confirms H and H explains E, it is not always rational to infer the explanans
H – the standards of reasonable abductive inference are stricter than the standards of
confirmatory relations. And in some cases (i.e., given specific priors), abduction is not
an option at all.

To sum up: this brief investigation shows that in case the explanandum is not learned
with full certainty, Bayesians infer the explanans only when the explanation of E by H
was already assumed to be plausible enough and when E has been learned with enough
certainty. This makes sense: if one is not certain enough of Tim and Harry jogging
or if they initially thought that their jogging does not make enough sense in light of
the renewed friendship, then it makes no sense to infer that they are friends again even
if this would provide a perfect explanation of the uncertain observation. A Bayesian
characterization of this type of abduction may therefore be given in the following way:

The surprising fact, E, is observed, which prompts an increase in its proba-
bility.

But if H were true, E would be a matter of course.

Hence, if E has become probable enough and H was also initially already
assumed to be relevant enough for E, there is a reason to suspect that H is
true.

4. Conclusion
My investigation shows that abduction is conditionally compatible with Bayesianism:

abductive inference is compatible with Bayesianism whenever learning the explanandum
and inferring the conditional dependence of the explanandum on the explanans leads
to a rational increase in the probability of the explanans. Peirce’s characterization of
abduction helps us understand the type of inference that is ubiquitous in everyday and
scientific reasoning (Lombrozo 2006), while a Bayesian analysis helps us understand
why and when it is reasonable. My investigation also suggests why many (e.g. Cabrera
2017, Climenhaga 2017, van Fraassen 1989, Roche and Sober 2013) consider abduction
to be distinct from Bayesian inference – because just the fact that H explains E does not
always suffice to become more certain of E. Yet it often does and my analysis provides
the conditions under which it does for at least one type of abductive reasoning (AE).

My focus has been on abduction, but this also helps us understand the role of inference
to the best explanation (IBE) in Bayesianism. If there are multiple potential explanantia



Hi for a single explanandum E (i.e., several high conditional probabilities %(E|Hi)), then
IBE may be characterized as a conjunction of AE for each Hi with respect to the same E
and the fact that some Hi become(s) most plausible – depending on the prior probabilities
and the degree to which the agent becomes certain of the explanandum. IBE may in this
sense then also be seen as a vital component of the standard Bayesian toolkit.

Note also that my aim is to show that abduction is compatible with standard Bayesian-
ism, which is also why I do not address cases where one does not become sure whether E
would be a matter of course if H were true (i.e., when %0(E|H) < 1). In these cases, the
conditional relation between H and E is uncertain and as such demands a non-standard
Bayesian treatment of conditional learning on which there is no clear consensus yet
(for three varying views, see e.g. Douven 2012, Eva et al. 2020, Günther and Trpin
2023). This need not be seen as a limitation because Peirce’s guiding characterization
of abduction also operates with the assumption that E would be ‘a matter of course’ if H
were true. In future work it would be nevertheless interesting to see what follows when
this assumption is relaxed.

It is worth noting that this is in contrast to well-known critics of Bayesian explana-
tionism such as van Fraassen (1989) and Roche and Sober (2013) (for an overview of
the discussion and a more general defense of explanationism, see Lange 2023). The ap-
proach also differs from Weisberg’s (2009) where explanatory considerations are taken
into account in informing the priors. Here, I have instead shown that under the ap-
propriate conditions abductive inference is simply part of Bayesian inference as such.
Finally, my approach shows that one may take explanatory considerations into account in
a probabilistic framework without necessarily deferring to non-Bayesian forms of belief
updating, such as those considered by Douven (2013) and Trpin and Pellert (2019). Of
course, there may also be other reasonable ways of spelling out abduction, which I did
not address. However, my investigation shows that at least in some senses (that is, at least
in the sense of AE) abduction is part of Bayesianism. Paraphrasing Climenhaga (2017),
inference to the best explanation is made coherent insofar it corresponds to Bayesian
inference, which it very well may.1
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Appendix
With the prior and posterior probability distributions as defined in Eqs. 2 and 3, and
reusing the result by Eva and Hartmann 2018: Supplementary Material, Eq. 27:

%0(H) = ⌘0 = %(H|E)%0(E) = ⌘?

4
40, (4)

where %(E) := ⌘? + ⌘̄@ and %0(E) = ⌘0?0 + ⌘̄0@0. It is then straightforward to see that

�� := %0(H) � %(H) = ⌘0 � ⌘ =
⌘?

4
40 � ⌘ > 0 (5)

, 40 >
4

?
(6)

⇤
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